Tag Archives: graph search

Delivering a Graph Based Search solution to slightly wrong data

oops

When it comes to databases, having good clean data is always important. More so with Graphs which deal with concepts as nodes and their relationships between them. Inevitably, you will run into messy data and have to deal with it. In a lot of the projects our customers work on they are dealing with connecting multiple data sources to get to a “golden record” or single source of truth. A lofty goal, sometimes impossible to achieve, but we can use the relationships of the data to help us come close.

One option is to extract the features (or tags) of a composite object and see if any other object shares most of these features. If that is the case then they are possibly the same object and should be merged instead of creating a new record. A partial subgraph match is something akin to a recommendation engine in Neo4j and pretty trivial to write. Take a look back at a few old blog posts for ideas.
Continue reading

Tagged , , , , , , , , , ,

The Last Mile

Last-Mile

The “last mile” is a term used in the telecommunications industry that refers to delivering connectivity to the customers that will actually be using the system. In the sense of Graph Databases, it refers to how well the end user can extract value and insight from the graph. We’ve already seen an example of this concept with Graph Search, allowing a user to express their requests in natural language. Today we’ll see another example. We’ll be taking advantage of the features of Neo4j 2.0 to make this work, so be sure to have read the previous post on the matter.

We’re going to be using VisualSearch.js made by Samuel Clay of NewsBlur. VisualSearch.js enhances ordinary search boxes with the ability to autocomplete faceted search queries. It is quite easy to customize and there is an annotated walkthrough of the options available. You can see what it does in the image below, or click it to try their demo.

Continue reading

Tagged , , , , , , ,